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SUMMARY

The enhanced-discretization successive update method (EDSUM) is a multi-level iteration method de-
signed for computation of the �ow behaviour at small scales. As an enhancement in iterative solution of
non-linear and linear equation systems, the EDSUM is one of the enhanced discretization and solution
techniques developed for more e�ective computation of complex �ow problems. It complements tech-
niques based on enhancement in spatial discretization and based on enhancement in time discretization
in the context of a space–time formulation. It is closely related to the enhanced-discretization interface-
capturing technique (EDICT), as the function spaces used in the EDSUM are very similar to those used
in the EDICT. The EDSUM also has a built-in mechanism for transferring �ow information between
the large and small scales in a fashion consistent with the discretizations resulting from the underlying
stabilized formulations. With a number of test computations for steady-state problems governed by the
advection–di�usion equation, we demonstrate that the EDSUM has the potential to become a compet-
itive technique for computation of �ow behaviour at small scales. Copyright ? 2004 John Wiley &
Sons, Ltd.

KEY WORDS: �ow simulation; enhanced discretization and solution techniques; iterative methods;
successive update method; multi-level iteration techniques

1. INTRODUCTION

A number of enhanced discretization and solution techniques were developed in recent years
for more accurate and more e�cient computation of complex �ow problems, including �ows
with moving boundaries and interfaces. These techniques are based on enhancement in spatial
discretization, enhancement in time discretization, and enhancement in iterative solution of
non-linear and linear equation systems. The enhanced discretization and solution techniques
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are built around the core formulations that we rely on in simulation and modelling com-
plex �ow problems. These core methods include the stabilized �nite element techniques
such as the streamline-upwind=Petrov–Galerkin (SUPG) [1–4] and pressure-stabilizing=Petrov–
Galerkin (PSPG) [5] formulations, as well as interface-tracking and interface-capturing tech-
niques (see References [5–11]). The PSPG formulation is based on an earlier pressure-
stabilizing formulation [12] that was designed for Stokes �ows.

Stabilized formulations prevent numerical instabilities in solving problems with high
Reynolds or Mach numbers and shocks or thin boundary layers, as well as when using equal-
order interpolation functions for velocity and pressure. The SUPG and PSPG formulations
are among the stabilized methods that achieve these objectives without introducing excessive
numerical dissipation. Stabilized formulations also substantially improve the convergence rate
in iterative solution of the large, coupled non-linear equation system that needs to be solved
at every time step of a �ow computation.

In an interface-tracking technique the mesh moves to track (follow) the interface. The
deforming-spatial-domain=stabilized space–time (DSD=SST) formulation [5, 13, 14] is an
interface-tracking technique where the �nite element formulation of the problem is written
over its space–time domain. As the spatial domain occupied by the �uid changes its shape
in time, the mesh needs to be updated. In general, this is accomplished by moving the mesh
with the automatic mesh moving technique introduced in Reference [15], where the motions
of the nodes are governed by the equations of elasticity. A full or partial remeshing (i.e.
generating a new set of elements, and sometimes also a new set of nodes) is performed when
the elements are distorted beyond an acceptable level. The stabilized space–time formulations
were used earlier by other researchers to solve problems with �xed spatial domains (see for
example Reference [16]).

In an interface-capturing technique the mesh does not move to follow the interface, but
instead the interface is ‘captured’ by somehow locating it over the non-moving mesh. An
interface function of one kind or another is used in marking the location of the interface.
In addition to the �ow equations, an advection equation governing the time-evolution of the
interface function is solved over the non-moving mesh. The interface-capturing techniques
have the advantage of being free from mesh update requirements, but, for comparable levels
of spatial discretization, yield less accurate representation of the interface. Independent of
how accurately the interface is located, the accuracy in representing the �ow �eld around the
interface will be limited by the resolution of the �uid mesh where the interface happens to
be located.

As an enhancement in spatial discretization, the enhanced-discretization interface-capturing
technique (EDICT) was introduced in Reference [17] to increase accuracy in representing an
interface. In the EDICT, in the stabilized formulations of the �ow and advection equations
to be solved, the function spaces used are based on enhanced discretization at and near the
interface. A subset of the elements in the base mesh, Mesh-1, are identi�ed as those at and near
the interface. A more re�ned mesh, Mesh-2, is constructed by patching together second-level
meshes generated over each element in this subset. The interpolation functions for velocity
and pressure have two components each: one coming from Mesh-1 and the second one coming
from Mesh-2. To further increase the accuracy, a third-level mesh, Mesh-3, is constructed for
the interface function only. The construction of Mesh-3 from Mesh-2 is very similar to the
construction of Mesh-2 from Mesh-1. The interpolation functions for the interface function
have three components, each coming from one of these three meshes. The subsets over which

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:633–654



ENHANCED-DISCRETIZATION 635

Mesh-2 and Mesh-3 are built are re-de�ned not every time step but with su�cient frequency
to keep the interface always enveloped in.

The EDSTT was introduced in References [7–9] as an enhancement in time discretization in
the context of a space–time formulation. The EDSTT was developed to have more �exibility
in carrying out time-accurate computations of �uid–structure interactions where we �nd it
necessary to use smaller time steps for the structural dynamics part. In general, EDSTT can
be used in time-accurate computations where, for whatever reason, we require smaller time
steps in certain parts of the �uid domain. Test computations for the EDSTT were reported in
Reference [18].

The set of enhanced discretization and solution techniques also include enhancements in
iterative solution of non-linear and linear equation systems. The enhanced-iteration non-linear
solution technique (EINST) [7–9, 19] and the enhanced-approximation linear solution tech-
nique (EALST) [7–9, 19] were introduced as complements to the enhancements in spatial and
temporal discretizations. The EINST and EALST were developed to increase the performance
of the iterative techniques used in solution of the non-linear and linear equation systems when
some parts of the computational domain may o�er more of a challenge for the iterative method
than the others. These two techniques can be used for computations based on semi-discrete or
space–time formulations. Test computations for the EALST were reported in Reference [20].

The enhanced-discretization successive update method (EDSUM) was proposed in Refer-
ences [6, 9–11] as another enhancement in iterative solution of non-linear and linear equation
systems. It is closely related to the EDICT, in the sense that the function spaces used are
very similar to those used in the EDICT. The EDSUM is a multi-level iteration method de-
veloped for the purpose of being able to compute the �ow behaviour at small scales. It has a
built-in mechanism for transferring �ow information between the large and small scales. The
information transfer is achieved in a fashion consistent with the discretizations resulting from
the stabilized formulations.

In Sections 2 and 3 we review the governing equations and the standard stabilized formula-
tions. The enhanced-discretization stabilized formulations are described in Section 4, and the
construction of the function spaces in Section 5. In Section 6 we provide a brief explana-
tion of the iterative methods used. The multi-level successive update method is described in
Section 7. Test computations for problems governed by the advection–di�usion equation are
reported in Section 8, and the concluding remarks are presented in Section 9.

2. GOVERNING EQUATIONS

2.1. Navier–Stokes equations of incompressible �ows

Let � ⊂Rnsd be the spatial domain with boundary �, and (0; T ) be the time domain. The
Navier–Stokes equations of incompressible �ows can be written on � and ∀t ∈ (0; T ) as

�
(
@u
@t

+ u ·∇u−f
)

−∇ ·�= 0 (1)

∇ ·u= 0 (2)
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where �, u and f are the density, velocity and the external force, respectively. The stress
tensor � is de�ned as

�(p; u) = −pI+ 2�”(u) (3)

Here p is the pressure, I is the identity tensor, �=�� is the viscosity, � is the kinematic
viscosity, and ”(u) is the strain-rate tensor:

”(u) =
1
2

((∇u) + (∇u)T) (4)

The essential and natural boundary conditions for Equation (1) are represented as

u= g on �g; n ·�= h on �h (5)

where �g and �h are complementary subsets of the boundary �; n is the unit normal vector,
and g and h are given functions. A divergence-free velocity �eld u0(x) is speci�ed as the
initial condition.

2.2. Advection–di�usion equation

As a model equation possessing some of the signi�cant features of Equation (1), we consider
the following time-dependent advection–di�usion equation, written on � and ∀t ∈ (0; T ) as

@�
@t

+ u ·∇�− ∇ ·(�∇�) = 0 (6)

where � represents the quantity being transported (e.g. temperature, concentration), and �
is the di�usivity, which is separate from (but in mathematical signi�cance very comparable
to) the � representing the kinematic viscosity. The essential and natural boundary conditions
associated with Equation (6) are represented as

�= g on �g; n ·�∇�= h on �h (7)

A function �0(x) is speci�ed as the initial condition.

3. STANDARD STABILIZED FORMULATIONS

3.1. Advection–di�usion equation

For the advection–di�usion equation given by Equation (6), let us assume that we have
constructed some suitably de�ned �nite-dimensional trial solution and test function spaces Sh

�

and Vh
� . The stabilized �nite element formulation can then be written as follows: �nd �h ∈Sh

�

such that ∀wh ∈Vh
� :

∫
�
wh

(
@�h

@t
+ uh ·∇�h

)
d� +

∫
�

∇wh ·�∇�h d� −
∫

�h

whhh d�

+
nel∑
e=1

∫
�e
�SUPGuh ·∇wh

(
@�h

@t
+ uh ·∇�h − ∇ ·(�∇�h)

)
d� = 0 (8)
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Here nel is the number of elements, �e is the domain for element e, and �SUPG is the SUPG
stabilization parameter. For various ways of calculating �SUPG, see References [21, 22].

3.2. Navier–Stokes equations of incompressible �ows

For the Navier–Stokes equations of incompressible �ows, given by Equations (1)–(2), let us
assume that we have some suitably de�ned �nite-dimensional trial solution and test function
spaces for velocity and pressure: Sh

u , Vh
u , Sh

p and Vh
p ( =Sh

p ). The stabilized �nite element
formulation can then be written as follows: �nd uh ∈Sh

u and ph ∈Sh
p such that ∀wh ∈Vh

u and
∀qh ∈Vh

p :

∫
�
wh ·�

(
@uh

@t
+ uh ·∇uh − fh

)
d� +

∫
�
”(wh) :�(ph; uh) d� −

∫
�h

wh ·hh d�

+
∫

�
qh∇ ·uh d� +

nel∑
e=1

∫
�e

1
�

[�SUPG�uh ·∇wh + �PSPG∇qh] ·[ L(ph; uh) − �fh] d�

+
nel∑
e=1

∫
�e
�LSIC∇ ·wh�∇ ·uh d� = 0 (9)

where

 L(qh;wh) =�
(
@wh

@t
+ uh ·∇wh

)
−∇ ·�(qh;wh) (10)

Here �PSPG and �LSIC are the PSPG and LSIC (least-squares on incompressibility constraint) sta-
bilization parameters. For various ways of calculating �PSPG and �LSIC, see References [21, 22].

4. ENHANCED-DISCRETIZATION STABILIZED FORMULATIONS

To maintain the generality of the formulations, we allow for cases where the enhanced-
discretization zone does not necessarily cover the entire domain and its shape and location
may change during the computation. A subset of the elements in the base mesh, Mesh-1,
are identi�ed as those constituting the enhanced-discretization zone. A more re�ned mesh,
Mesh-2, is constructed by patching together second-level meshes generated over each element
in this subset. The trial and test functions will have two components each, one coming from
Mesh-1 and the second one coming from Mesh-2.

4.1. Advection–di�usion equation

At a time level n, the trial function space corresponding to �hn is denoted by (Sh
� )n, and the test

function space corresponding to the advection–di�usion equation by (Vh
� )n. The subscript n

indicates that the spatial discretizations corresponding to di�erent time levels may be di�erent.
The enhanced-discretization stabilized formulation of Equation (6) is written as follows: given
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�hn, �nd �hn+1 ∈ (Sh
� )n+1, such that ∀whn+1 ∈ (Vh

� )n+1:

∫
�
whn+1

(
@�h

@t
+ uh ·∇�h

)
d� +

∫
�

∇whn+1 ·�∇�h d� −
∫

�h

whn+1h
h d�

+
nel∑
e=1

∫
�e
�SUPGuh ·∇whn+1

(
@�h

@t
+ uh ·∇�h − ∇ ·(�∇�h)

)
d� = 0 (11)

The trial and test functions, at a time level n, are de�ned as

�hn =�1
n + �2

n (12)

whn =w1
n + w2

n (13)

where superscripts 1 and 2 denote the components of the functions coming from Mesh-1 and
Mesh-2, respectively.

4.2. Navier–Stokes equations of incompressible �ows

At a time level n, the trial function spaces corresponding to the velocity and pressure are de-
noted by (Sh

u )n and (Sh
p )n. The test function spaces corresponding to the momentum equation

and incompressibility constraint are denoted by (Vh
u )n and (Vh

p )n ( = (Sh
p )n). The enhanced-

discretization stabilized formulation of Equations (1)–(2) is written as follows: given uhn, �nd
uhn+1 ∈ (Sh

u )n+1 and phn+1 ∈ (Sh
p )n+1, such that ∀whn+1 ∈ (Vh

u )n+1 and ∀qhn+1 ∈ (Vh
p )n+1:

∫
�
whn+1 ·�

(
@uh

@t
+ uh ·∇uh − fh

)
d� +

∫
�
”(whn+1) :�(ph; uh) d�

−
∫

�h

whn+1 ·hh d� +
∫

�
qhn+1∇ ·uh d�

+
nel∑
e=1

∫
�e

1
�

[�SUPG�uh ·∇whn+1 + �PSPG∇qhn+1] ·[ L(ph; uh) − �fh] d�

+
nel∑
e=1

∫
�e
�LSIC∇ ·whn+1�∇ ·uh d� = 0 (14)

The trial and test functions, at a time level n, are de�ned as

uhn = u1
n + u2

n (15)

phn =p1
n + p2

n (16)

whn =w1
n + w2

n (17)

qhn = q1
n + q2

n (18)
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5. CONSTRUCTION OF THE FUNCTION SPACES

In constructing the function spaces corresponding to a time level n, we start with a base mesh
(Mesh-1), with the set of elements and nodal points denoted by �1n and �1

n. The subscript n
implies that Mesh-1 itself might change from one time level to another.

A second-level and more re�ned mesh (Mesh-2) is constructed over a subset (�1n)
2
n of these

elements. Mesh-2 is generated by patching together the second-level meshes generated over
each of the elements in (�1n)

2
n. The second subscript n implies that for a given Mesh-1, which

elements of this mesh are declared to be in (�1n)
2
n might change from one time level to other.

An element which might be declared to be in (�1n)
2
n at some time level, might fall out of it at

some other time, and yet come back in again some time later. For each element in �1n, there
will be a unique second-level mesh. Therefore, if an element is declared to be in (�1n)

2
n for

a second time, the re�ned mesh generated over that element at the earlier declaration can be
reused. If an automatic mesh generator is being used to generate these second-level meshes,
the cost for that mesh generation will be a one-time cost. The set of elements and nodal
points for Mesh-2 are denoted by �2n and �2

n.
The function �1

n comes from a space of functions with the basis set consisting of the
shape functions associated with all the nodes in �1

n. The function �2
n comes from a space of

functions with the basis set consisting of the shape functions associated with all the nodes
in �2

n, excluding those coinciding with the nodes in �1
n, and also excluding those at the

boundaries of the zones covered by the elements in �2n unless those boundaries coincide with
the boundaries of �. The sum of the two trial functions, �1

n+�2
n, needs to satisfy the essential

boundary conditions. We construct u1
n, u2

n, p
1
n , and p2

n in exactly the same way, except for
recognizing that for p1

n and p2
n the references to essential boundary conditions do not apply.

The components of each test function are de�ned in the same way as we did for the trial
functions, except that the test functions need to satisfy the homogeneous form of the essential
boundary conditions.

We do not update (�1n)
2
n every time step. We update it frequently enough to meet our

objective of having enhanced discretization at the zones speci�ed by some criteria. How long
we can compute without re-de�ning this subset will depend on how much larger we decide
to keep it compared to the level dictated by the criteria used. The more we exceed the level
dictated, the longer we can compute before we need to re-de�ne it again. Whenever we re-
de�ne this subset, the mesh generation cost will not be a signi�cant one. If we are using an
automatic mesh generator for the second mesh, we will be able to use and reuse the meshes
which were generated (and stored) the �rst time these meshes were needed.

6. ITERATIVE SOLUTION METHODS

Full discretizations of the formulations described in the earlier sections lead to coupled, non-
linear equation systems that need to be solved at every time step of the simulation. We can
represent the equation system that needs to be solved as follows:

N(dn+1) =F (19)

where dn+1 is the vector that contains the nodal unknowns associated with marching from
time level n to n+ 1.
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We solve Equation (19) with the Newton–Raphson method:

@N
@d

∣∣∣∣
din+1

(�din+1) =F−N(din+1) (20)

where i is the step counter for the Newton–Raphson sequence, and �din+1 is the increment
computed for din+1. The linear equation system we see in Equation (20) needs to be solved
at every step of the Newton–Raphson sequence. We can represent Equation (20) as a linear
equation system of the form

Ax= b (21)

In the class of computations we typically carry out, this equation system would be too large
to solve with a direct method. Therefore we solve it iteratively. The objective would be to
drive the residual,

r= b−Ax (22)

down to an acceptable level. Iterations involve repeated computations of the form Ax and

�y=P−1r (23)

where P, the preconditioning matrix, is an approximation to A. The preconditioner P has to
be simple enough to form and factorize e�ciently. However, it also has to be sophisticated
enough to yield a desirable convergence rate. A computation of the form Ax can be performed
in several di�erent ways. It can be based on a sparse-matrix storage of A. It can also be
based on storing just element-level matrices (element-matrix-based), or even just element-level
vectors (element-vector-based). This last strategy is also called the matrix-free technique. How
to update the solution vector x is also a major subject in iterative solution techniques. Several
update methods are available, and we use the GMRES [23] method.

We have been focusing our research related to iterative methods mainly on carrying out the
computations of the form Ax e�ciently and selecting a good preconditioner P. In these e�orts
we have always been keeping in mind that the iterative solution methods we develop need to
be e�ciently implemented on parallel computing platforms. For example, as part of designing
‘parallel-ready’ iterative solution techniques, for computations of the form Ax, we have made
use of the element-matrix-based [24], element-vector-based [24], and sparse-matrix-based [25]
techniques. Furthermore, we proposed in References [6, 9, 19] a mixed analytical=numerical
element-vector-based (AEVB=NEVB) computation technique as well as a mixed element-
matrix-based=element-vector-based (EMB=EVB) technique. The element-vector-based methods
were successfully used also by other researchers in the context of parallel computations (see
for example References [26, 27]).

In preconditioner design, we developed some advanced preconditioners such as the clustered-
element-by-element (CEBE) preconditioner [28] and the mixed CEBE and cluster companion
(CC) preconditioner [28]. We have implemented, with quite satisfactory results, the CEBE
preconditioner in conjunction with an ILU approximation [25]. However, our typical com-
putations are based on diagonal and nodal–block–diagonal preconditioners. These are simple
preconditioners, but are also easy to implement on parallel platforms. More on our parallel
implementations can be found in Reference [24].
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7. MULTI-LEVEL SUCCESSIVE UPDATE METHOD

In the context of enhanced-discretization, a non-linear equation system of the kind given by
Equation (19) involves four classes of nodes. Class-1 consists of all the Mesh-1 nodes. These
nodes are connected to each other through the Mesh-1 elements. Class-2E consists of the
Mesh-2 edge nodes (but excluding those coinciding with the Mesh-1 nodes). The edge nodes
associated with di�erent edges are not connected (except those at each side of an edge, but we
could possibly neglect that a side node might be connected to the side nodes of the adjacent
edges). Nodes within an edge are connected through Mesh-2 elements. Class-2F contains the
Mesh-2 face nodes (but excluding those on the edges). The face nodes associated with di�erent
faces are not connected (except those at sides of a face, but we could possibly neglect that
those side nodes might be connected to the side nodes of the adjacent face). Nodes within a
face are connected through Mesh-2 elements. Class-2I nodes are the Mesh-2 interior nodes.
The interior nodes associated with di�erent clusters of Mesh-2 elements are not connected.
Nodes within a cluster are connected through Mesh-2 elements. Based on this multi-level
decomposition concept, Equation (19) can be re-written, as described in References [6, 9–11],
in the following form:

N1(d1; d2E; d2F ; d2I) = F1

N2E(d1; d2E; d2F ; d2I) = F2E

N2F(d1; d2E; d2F ; d2I) = F2F

N2I (d1; d2E; d2F ; d2I) = F2I

(24)

where the subscript ‘n+ 1’ has been dropped to simplify the notation.
In the approximate Newton–Raphson method proposed in References [6, 9–11] to solve

Equation (24), at each non-linear iteration step, we successively update the solution vectors
corresponding to each class. While updating each class, we use the most recent values of the
solution vectors in calculating the vectors N1, N2E , N2F , and N2I and their derivatives with
respect to the solution vectors. We start with updating the Class-1 nodes, then update the Class-
2E, Class-2F, and Class-2I nodes, respectively. The steps followed can be written, as done in
References [9–11, 19], in the form shown below, where each class of equations are solved in
the order they are written.

@N1

@d1

∣∣∣∣
(di1 ; d

i
2E ; d

i
2F ; d

i
2I )

(�di1) = F1 −N1(di1; d
i
2E; d

i
2F ; d

i
2I)

@N2E

@d2E

∣∣∣∣
(di+1

1 ; di2E ; d
i
2F ; d

i
2I )

(�di2E) = F2E −N2E(di+1
1 ; di2E; d

i
2F ; d

i
2I)

@N2F

@d2F

∣∣∣∣
(di+1

1 ; di+1
2E ; d

i
2F ; d

i
2I )

(�di2F) = F2F −N2F(di+1
1 ; di+1

2E ; d
i
2F ; d

i
2I)

@N2I

@d2I

∣∣∣∣
(di+1

1 ; di+1
2E ; d

i+1
2F ; d

i
2I )

(�di2I) = F2I −N2I (di+1
1 ; di+1

2E ; d
i+1
2F ; d

i
2I)

(25)
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This sequence would be repeated as many times as needed, and, as an option, as proposed in
References [9, 10, 19], we could alternate between this sequence and its reverse sequence:

@N2I

@d2I

∣∣∣∣
(di1 ; d

i
2E ; d

i
2F ; d

i
2I )

(�di2I) = F2I −N2I (di1; d
i
2E; d

i
2F ; d

i
2I)

@N2F

@d2F

∣∣∣∣
(di1 ; d

i
2E ; d

i
2F ; d

i+1
2I )

(�di2F) = F2F −N2F(di1; d
i
2E; d

i
2F ; d

i+1
2I )

@N2E

@d2E

∣∣∣∣
(di1 ; d

i
2E ; d

i+1
2F ; d

i+1
2I )

(�di2E) = F2E −N2E(di1; d
i
2E; d

i+1
2F ; d

i+1
2I )

@N1

@d1

∣∣∣∣
(di1 ; d

i+1
2E ; d

i+1
2F ; d

i+1
2I )

(�di1) = F1 −N1(di1; d
i+1
2E ; d

i+1
2F ; d

i+1
2I )

(26)

Updating the solution vector corresponding to each class would also require solution of
a large equation system. These equations systems would each be solved iteratively, with
an e�ective preconditioner, a reliable search technique, and parallel implementation. It is
important to note that the bulk of the computational cost would be for Class-1 and Class-2I.
It was proposed in References [6, 9–11] that while the Class-1 nodes would be partitioned to
di�erent processors of the parallel computer, for the remaining classes, nodes in each edge,
face or interior cluster would be assigned to the same processor. Therefore, solution of each
edge, face or interior cluster would be local. If the size of each interior cluster becomes
too large, then, as proposed in References [6, 9–11], nodes for a given cluster can also be
distributed across di�erent processors, or a third level of mesh re�nement can be introduced
to make the enhanced discretization a tri-level kind.

A variation of the EDSUM was proposed in References [9, 10, 19], for the iterative solution
of the linear equation system that needs to be solved at every step of a (full) Newton–Raphson
method applied to Equation (24). To describe this variation, we �rst re-write Equation (21)
based on the multi-level decomposition concept:

A11x1 +A12Ex2E +A12Fx2F +A12Ix2I = b1

A2E1x1 +A2E2Ex2E +A2E2Fx2F +A2E2Ix2I = b2E

A2F1x1 +A2F2Ex2E +A2F2Fx2F +A2F2Ix2I = b2F

A2I1x1 +A2I2Ex2E +A2I2Fx2F +A2I2Ix2I = b2I

(27)

where

A�	 =
@N�
@d	

(28)
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with �, 	= 1; 2E; 2F; 2I . Then, for the iterative solution of Equation (27), we de�ne two
preconditioners:

PLTOS =




A11 0 0 0

A2E1 A2E2E 0 0

A2F1 A2F2E A2F2F 0

A2I1 A2I2E A2I2F A2I2I




(29)

PSTOL =




A11 A12E A12F A12I

0 A2E2E A2E2F A2E2I

0 0 A2F2F A2F2I

0 0 0 A2I2I




(30)

It was proposed in References [9, 10, 19] that these two preconditioners are used alternatingly
during the inner iterations of the GMRES search. We note that this mixed precondition-
ing technique with multi-level discretization is closely related to the mixed CEBE and CC
preconditioning technique [28] we referred to in Section 6. Along these lines, as a mixed
preconditioning technique that is more closely related to the mixed CEBE and CC technique,
it was proposed in References [9–11, 29] that the following three preconditioners be used in
sequence during the inner iterations of the GMRES search:

PL =




A11 0 0 0

0 DIAG(A2E2E) 0 0

0 0 DIAG(A2F2F) 0

0 0 0 DIAG(A2I2I)




(31)

PSETOI =




DIAG(A11) 0 0 0

0 A2E2E 0 0

0 A2F2E A2F2F 0

0 A2I2E A2I2F A2I2I




(32)

PSITOE =




DIAG(A11) 0 0 0

0 A2E2E A2E2F A2E2I

0 0 A2F2F A2F2I

0 0 0 A2I2I




(33)
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As possible sequences, (PL, PSETOI, PSITOE; : : : ;PL, PSETOI, PSITOE), as well as (PL, PSETOI,
: : : ;PL, PSETOI) and (PL, PSITOE; : : : ;PL, PSITOE) were proposed in References [9–11, 29]. As
a somewhat downgraded version of PL, as proposed in References [9–11, 29], we can use a
preconditioner that is equivalent to not updating x2E , x2F , and x2I , instead of updating them by
using DIAG(A2E2E), DIAG(A2F2F), and DIAG(A2I2I). Similarly, as downgraded versions of
PSETOI and PSITOE, we can use preconditioners that are equivalent to not updating x1, instead
of updating it by using DIAG(A11).

To di�erentiate between the two variations of the EDSUM we described in this section, we
call the non-linear version, described by Equations (25) and (26), EDSUM-N, and the linear
version, described by Equations (27)–(33), EDSUM-L.

Remark 1
It was pointed out in References [10, 11] that the EDSUM provides a natural framework for
resourceful and selective application of stabilized formulations to multi-scale computations and
subgrid-scale modelling. Along these lines, the ‘enhanced-discretization selective stabilization
procedure (EDSSP)’ was proposed in References [10, 11]. In the EDSSP, �nite element equa-
tions generating di�erent blocks of the non-linear equation system given by Equation (24)
would be based on di�erent stabilized formulations. Level-1 equations (generating the �rst
block) would be based on a stabilized formulation more suitable for �ow behaviour at larger
scales, and the Level-2 equations (generating the second, third and fourth blocks) would be
based on a stabilized formulation more suitable for �ow behaviour at smaller scales. As a
special version of the EDSSP, it was proposed in References [10, 11] to use with the Level-1
equations only the SUPG and PSPG stabilizations, and with the Level-2 equations use addi-
tionally the DCDD stabilization [9, 22, 30, 31].

Remark 2
The EDSUM-B was proposed in References [10, 11] as an approximate version of the EDSUM.
In the EDSUM-B, it is proposed to solve the Level-2 equations less frequently than the Level-1
equations. For example, as it was pointed in References [10, 11], instead of performing the
same number of iterations to solve all four blocks of Equation (24), we can perform one iter-
ation for the Level-2 blocks for every two iterations we perform for the Level-1 block. This
would mean that the small-scale data used in solving the large-scale equations is updated at ev-
ery other iteration. As another example of EDSUM-B, it was proposed in References [10, 11]
to use for the Level-2 equations a more dissipative time-integration algorithm and a time-step
size that is twice the time-step size we use for the Level-1 equations. This would mean that
the small-scale data used in solving the large-scale equations is updated at every other time
step. Although the EDSUM-B is a more approximate technique compared to the EDSUM, it
will still be superior in accuracy compared to carrying out the computation with the Level-1
discretization alone.

8. TEST COMPUTATIONS

In this section, we present results obtained from 2D test computations of problems governed by
the steady-di�usion and steady-advection equations. The stabilized �nite element formulations
given by Equations (8) and (11) are used for computations based on standard-discretization
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(‘standard’) and enhanced-discretization (‘EDSUM’), respectively. For all computations, the
domain size is 1:5 × 1:5 and the discretization has 97 × 97 nodes. For EDSUM computations
the enhanced-discretization zone covers the entire domain, and the 97 × 97 discretization is
achieved by the combination of Mesh-1 with 25 × 25 nodes and Mesh-2 with 97 × 97 nodes.

8.1. Performance evaluation of the standard and EDSUM function spaces

To investigate if the EDSUM function space is inherently superior in iterative computations
to the standard function space, we perform some comparison tests. To have a fair comparison,
we use diagonal preconditioners with both function spaces, and keep the number of inner and
outer GMRES iterations the same.

8.1.1. Steady di�usion with uniform boundary pro�le. This is a boundary-value problem with
essential boundary conditions, 0.0 and 1.0, imposed at two opposite sides and homogeneous
natural boundary conditions at the other sides. Figure 1 shows the exact solution. We perform
one outer and 30 inner GMRES iterations. The solutions obtained with the standard and
EDSUM function spaces are shown in Figure 2. Clearly, the EDSUM solution is superior to
the standard solution.

8.1.2. Steady di�usion with parabolic boundary pro�le. In this boundary-value problem, an
essential boundary condition with parabolic pro�le is imposed at one side of the domain, and
homogeneous essential boundary conditions at all the other sides. Figure 3 shows the exact
solution. One outer and 30 inner GMRES iterations are performed. The solutions obtained

Figure 1. Steady di�usion with uniform boundary pro�le. Exact solution.
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Figure 2. Steady di�usion with uniform boundary pro�le. Solutions obtained with the standard (left)
and EDSUM (right) function spaces.

Figure 3. Steady di�usion with parabolic boundary pro�le. Exact solution.
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Figure 4. Steady di�usion with parabolic boundary pro�le. Solutions obtained with the standard (left)
and EDSUM (right) function spaces.

Figure 5. Steady advection. Left: mesh and boundary condition in the
form of a cosine hill. Right: exact solution.

with the standard and EDSUM function spaces are shown in Figure 4. We again see that the
EDSUM solution is superior to the standard solution.

8.1.3. Steady advection. This is a boundary-value problem with an essential boundary con-
dition in the form of a cosine hill imposed at an internal line (see Figure 5). At each
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side of the domain, depending on where the �ow is coming in and where it is going
out, we impose homogeneous essential boundary condition between the midpoint and one
corner and homogeneous natural boundary condition between the midpoint and the other
corner. Figure 5 shows also the exact solution. We perform 20 inner GMRES iterations
(per outer GMRES iteration), and compare the standard and EDSUM solutions at the end
of each outer GMRES iteration, up to a total of 9. The solutions are shown in
Figures 6–8. We can clearly see that the EDSUM convergence is superior to the standard
convergence.

8.2. Performance evaluations of the EDSUM-L preconditioners

In this subsection, for the EDSUM function space, we comparatively evaluate the perfor-
mances of some of the EDSUM-L preconditioners described in Section 7. We include in our
comparisons the diagonal preconditioner as a starting point, remembering that even with a
diagonal preconditioner the EDSUM convergence is already superior to the standard conver-
gence. As test cases, we use the steady di�usion and steady advection problems we considered
in Section 8.1. For the two steady di�usion problems we perform one outer and up to 20
inner GMRES iterations, and for the steady advection problem one outer and up to 100
inner GMRES iterations. The EDSUM-L preconditioners tried in test computations are: di-
agonal, (PL), (PL, PSETOI,. . . ), (PL, PSITOE,. . . ), (PLTOS, PSTOL,. . . ), (PSTOL) and (PLTOS).
Figure 9 shows the convergence histories. All EDSUM-L preconditioners perform far better
than the diagonal preconditoner. In the steady di�usion problems, (PSTOL) and (PLTOS) yield
convergence rates that are very comparable to each other but superior to the convergence
rates obtained with all the other EDSUM-L preconditioners. In the steady advection prob-
lem, again, (PSTOL) and (PLTOS) convergence rates are comparable to each other but better
than the other convergence rates. In this test problem, compared to the diagonal precondi-
tioner, all EDSUM-L preconditioners have dramatically better convergence during the �rst few
iterations.

9. CONCLUDING REMARKS

We described the enhanced-discretization successive update method (EDSUM), a multi-level
iteration method designed for being able to compute the �ow behaviour at small scales. The
EDSUM is a technique based on enhancement in iterative solution of non-linear and linear
equation systems. It complements techniques based on enhancement in spatial discretization
and based on enhancement in time discretization in the context of a space–time formulation.
It is very much related to the enhanced-discretization interface-capturing technique (EDICT).
The EDSUM and EDICT are both based on using a two-level function space for the trial
and test functions in the �nite element formulation. The trial and test functions have two
components each, one coming from a �rst-level mesh (Mesh-1) and the second one coming
from a second-level, �ner mesh (Mesh-2) constructed over the �rst-level mesh. In the EDSUM,
the large-scale �ow information is represented by the interpolation functions associated with
Mesh-1, and the small-scale �ow information by the interpolation functions associated with
Mesh-2. Nodes are classi�ed into Mesh-1 nodes, and Mesh-2 edge, face and interior nodes.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:633–654



ENHANCED-DISCRETIZATION 649

Figure 6. Steady advection. Solutions obtained with the standard (left) and EDSUM (right) function
spaces, after 1 (top), 2 (middle), and 3 (bottom) outer GMRES iterations.

In the EDSUM-N, the non-linear equation system is solved by an approximate Newton–
Raphson method, where at each non-linear iteration step we successively update the solution
vectors corresponding to each class of nodes. While updating each class, we use the most
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Figure 7. Steady advection. Solutions obtained with the standard (left) and EDSUM (right) function
spaces, after 4 (top), 5 (middle), and 6 (bottom) outer GMRES iterations.

recent values of the solution vectors in calculating the non-linear vector functions and their
derivatives with respect to the solution vectors. In EDSUM-L, the linear equation system that
needs to be solved at every step of a (full) Newton–Raphson method is solved iteratively with
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Figure 8. Steady advection. Solutions obtained with the standard (left) and EDSUM (right) function
spaces, after 7 (top), 8 (middle), and 9 (bottom) outer GMRES iterations.

preconditioners designed based on the same successive update concept. In computations based
on stabilized formulations, during the successive updates, the projection of �ow information
between the large and small scales is consistent with the discretizations resulting from the
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Figure 9. Performance evaluations of EDSUM-L preconditioners. Left: (PL), (PL,
PSETOI,. . . ), and (PL, PSITOE,. . . ). Right: (PLTOS, PSTOL,. . . ), (PSTOL), and (PLTOS). Test
problems: steady di�usion with uniform boundary pro�le (top), steady di�usion with

parabolic boundary pro�le (middle), and steady advection (bottom).

stabilized formulations. We presented a number of test computations for steady-state problems
governed by the advection–di�usion equation to show how the EDSUM works and how it
accelerates the convergence of the iterative solutions.
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